366. Physical Properties and Chemical Constitution. Part XX. Aliphatic Alcohols and Acids.

By Arthur I. Vogel.

\begin{abstract}
The refractivities at 20° and the parachors of a number of alcohols and aliphatic acids have been determined. Subtraction of the constants for alkyl groups (Part XI, this vol., p. 610) lead to the following mean values for the contributions of the OH and the $\mathrm{CO}_{2} \mathrm{H}$ group :

	P.	$R_{\text {O }}$.	$R_{\text {D }}$.	$R_{\mathbf{F}}$.	$R_{\text {G }}$.	$M n_{\text {D }}^{20}{ }^{\circ}$.
OH	$30 \cdot 2$	$2 \cdot 536$	$2 \cdot 546$	$2 \cdot 570$	2.588	23.94
$\mathrm{CO}_{2} \mathrm{H}$	$73 \cdot 7$	$7 \cdot 191$	$7 \cdot 226$	$7 \cdot 308$	$7 \cdot 368$	63.98

Summation of the constants for CO (Part XI, loc. cit.) and OH gives values approximately equal to those determined directly for $\mathrm{CO}_{2} \mathrm{H}$; this is in contrast to COO (esters), the constants of which are very different from those deduced from CO (ketones) +O (ethers) (Part XII, this vol., p. 624).

Contrary to Sugden's views (" The Parachor and Valency", 1930, p. 167) no " negative anomaly " of the parachor nor its steady decrease with temperature over the normal temperature range studied could be detected; it is improbable, therefore, that the parachor can be employed to detect association in aliphatic alcohols and acids.

The objects of the present investigation were: (a) The direct determination of the contributions of the OH and the $\mathrm{CO}_{2} \mathrm{H}$ group to the parachor and refractivities. (b) A comparison of the constants calculated from $\{\mathrm{CO}$ (Part XI, loc. cit.) +OH$\}$ with those determined directly for $\mathrm{CO}_{2} \mathrm{H}$. Eisenlohr (Z. physikal. Chem., 1911, 75, 585; "Spektrochemie organischer Verbindungen: Molekularrefraktion und -dispersion", Ferdinand Enke, 1912, p. 48) computed the refractivity constants for "carbonyl oxygen" $\mathrm{O}^{\prime \prime}$ from aldehydes and ketones, $\mathrm{C}_{n} \mathrm{H}_{2 n} \mathrm{O}^{\prime \prime}-\left[\mathrm{CH}_{2}\right]_{n}$, and for " hydroxyl oxygen " O^{\prime} from acids, $\mathrm{C}_{n} \mathrm{H}_{2 n} \mathrm{O}^{\prime \prime} \mathrm{O}^{\prime}-\left[\mathrm{CH}_{2}\right]_{n}$. It seems surprising, that although the refractivities for some 10 aliphatic alcohols $\mathrm{C}_{n} \mathrm{H}_{2 n+2} \mathrm{O}^{\prime}$ are collected (loc. cit., p. 590), yet these figures are not employed for the calculation of the constants for "hydroxyl oxygen" but merely for the evaluation of the CH_{2} constants and for H (from $\left.\mathrm{C}_{n} \mathrm{H}_{2 n+2} \mathrm{O}^{\prime}-\left[\mathrm{CH}_{2}\right]_{n}-\mathrm{O}^{\prime}\right)$. Eisenlohr's figures for CH_{2} differ considerably from the author's (compare Part IX, J., 1946, 133), and in consequence all the derived constants are subject to appreciable error.

Sugden (op. cit., p. 167; J., 1924, 125, 38, 1185) utilises the so-called " negative anomaly" between the observed and the predicted value of the parachor and its steady decrease with rise of temperature as evidence for the association of the lower aliphatic alcohols and acids. The results for methyl alcohol, ethyl alcohol, and acetic acid quoted by Sugden in support of this view cover a range of temperatures approaching that of the critical temperature; furthermore, Sugden (op. cit., p. 36) agrees that at high temperatures both the surface tensions and the densities are difficult to measure with accuracy. The author's own parachor determinations of the lower aliphatic alcohols and acids extending to temperatures within $20-25^{\circ}$ of the boiling point do not reveal any such " negative anomaly" : the use of the parachor in the detection of association must therefore be accepted with considerable reserve.

The constants for OH have been deduced from the author's own measurements upon aliphatic alcohols by subtracting the values for the alkyl groups (Part XI, loc. cit.). The constants for the n-nonyl, n-decyl, and n-undecyl groups have been evaluated from the corresponding hydrocarbons (Part IX, loc. cit.), e.g., $n-\mathrm{C}_{9} \mathrm{H}_{20}-\mathrm{H} ; R_{\mathrm{G}^{\prime}}$ for n-nonane appears to be slightly in error and the value has been deduced from $\mathrm{C}_{8} \mathrm{H}_{17}{ }^{a}+\mathrm{CH}_{2}$. The parachor values are not given for those compounds which give erratic surface tensions by the method of capillary rise.

It will be observed that, unlike most other homologous series, the first member of the series and the secondary alcohol (isopropyl alcohol) do not give abnormally high values; they have accordingly been included in the calculation of the mean values. The results for methyl cellosolve, cellosolve, and butyl cellosolve, computed from the relationship

$$
\left.\mathrm{OH}=\text { Alkyl } \cdot \mathrm{O} \cdot \mathrm{CH}_{2} \cdot \mathrm{CH}_{2} \cdot \mathrm{OH}-\left\{\text { Alkyl }+2 \mathrm{CH}_{2}+\mathrm{O} \text { (in ethers }\right)\right\}
$$

fall into line. For purposes of comparison the figures deduced for benzyl alcohol and 2-phenylethyl alcohol are included in Table I: the constants for $\mathrm{C}_{6} \mathrm{H}_{5} \cdot \mathrm{CH}_{2}$ were calculated from $\mathrm{C}_{6} \mathrm{H}_{5} \cdot \mathrm{CH}_{2} \mathrm{Cl}$ (XIV, 261) - Cl , and $\mathrm{C}_{6} \mathrm{H}_{5} \cdot \mathrm{CH}_{2} \cdot \mathrm{CH}_{2}$ was assumed to be $\mathrm{C}_{6} \mathrm{H}_{5} \cdot \mathrm{CH}_{2}+\mathrm{CH}_{2}$.

The refractivities at 20° and, wherever possible, the parachors of a number of aliphatic carboxylic acids have been determined, and the contributions of the $\mathrm{CO}_{2} \mathrm{H}$ group calculated by subtracting the constants for the alkyl groups. The results are summarised in Table II : the

Table I.
Values for the OH group in alcohols.

Alcohol.	P.	$R_{\text {d }}$.	$R_{\text {D }}$.	$R_{\text {F }}$.	$R_{\mathbf{G}}{ }^{\text {. }}$	$M n^{20}{ }^{20}$
MeOH	$32 \cdot 8$	$2 \cdot 54$	$2 \cdot 57$	2.58	$2 \cdot 61$	$24 \cdot 44$
EtOH	$31 \cdot 4$	2.58	$2 \cdot 60$	$2 \cdot 63$	$2 \cdot 65$	24.00
$\mathrm{Pr}^{n} \mathrm{OH}$	$29 \cdot 7$	$2 \cdot 56$	$2 \cdot 57$	$2 \cdot 60$	$2 \cdot 62$	24.07
$\mathrm{Pr}^{4} \mathrm{OH}$	$30 \cdot 6$	$2 \cdot 59$	$2 \cdot 60$	$2 \cdot 62$	$2 \cdot 64$	23.80
$\mathrm{Bu}^{n} \mathrm{OH}$	$30 \cdot 0$	$2 \cdot 54$	2.55	2.57	2.58	23.91
$\mathrm{Bu}{ }^{\text {O }} \mathrm{OH}$	28.8	$2 \cdot 54$	2.55	2.57	2.58	23.89
$\mathrm{Am}^{n} \mathrm{OH}$	$29 \cdot 2$	2.58	2.59	$2 \cdot 61$	$2 \cdot 63$	23.83
$\mathrm{Am}^{8} \mathrm{OH}$ (synthetic)	-	$2 \cdot 54$	$2 \cdot 56$	2.58	2.59	23.88
$\mathrm{C}_{6} \mathrm{H}_{13}{ }^{n} \mathrm{OH} \ldots \ldots \ldots$.	-	$2 \cdot 52$	$2 \cdot 53$	2.57	2.57	23.80
$\mathrm{C}_{7} \mathrm{H}_{15}{ }^{n} \mathrm{OH}$	-	$2 \cdot 48$	$2 \cdot 49$	2.51	2.53	23.66
$\mathrm{C}_{8} \mathrm{H}_{17}{ }^{n} \mathrm{OH}$	-	$2 \cdot 52$	2.53	2.57	$2 \cdot 60$	$23 \cdot 79$
$\mathrm{C}_{6} \mathrm{H}_{19}{ }^{\text {n }} \mathrm{OH}$	-	2.56	2.55	2.59	$2 \cdot 60$	23.73
$\mathrm{C}_{10} \mathrm{H}_{21}{ }^{n} \mathrm{OH}$	-	2.53	2.53	2.54	$2 \cdot 56$	23.89
$\mathrm{C}_{11} \mathrm{H}_{23}{ }^{n} \mathrm{OH}$	-	$2 \cdot 51$	$2 \cdot 52$	2.54	$2 \cdot 56$	23.90
$\mathrm{C}_{3} \mathrm{H}_{5} \cdot \mathrm{OH} .$.	29.4	$2 \cdot 45$	$2 \cdot 46$	$2 \cdot 47$	$2 \cdot 49$	$24 \cdot 45$
Mean OH	$30 \cdot 2$	$2 \cdot 536$	$2 \cdot 546$	$2 \cdot 570$	2.588	23.94
$\mathrm{MeO} \cdot \mathrm{CH}_{2} \cdot \mathrm{CH}_{2} \cdot \mathrm{OH}$	$31 \cdot 8$	$2 \cdot 45$	$2 \cdot 45$	$2 \cdot 47$	$2 \cdot 48$	24.69
$\mathrm{EtO} \cdot \mathrm{CH}_{2} \cdot \mathrm{CH}_{2} \cdot \mathrm{OH}$	$30 \cdot 2$	2.53	$2 \cdot 54$	$2 \cdot 54$	2.56	$24 \cdot 29$
$\mathrm{Bu}^{n} \mathrm{O} \cdot \mathrm{CH}_{2} \cdot \mathrm{CH}_{2} \cdot \mathrm{OH}$		2.51	$2 \cdot 50$	2.53	$2 \cdot 54$	23.91
$\mathrm{Ph} \cdot \mathrm{CH}_{2} \cdot \mathrm{OH} \ldots$.	-	$2 \cdot 28$	$2 \cdot 28$	$2 \cdot 28$	$2 \cdot 26$	$21 \cdot 65$
$\mathrm{Ph} \cdot \mathrm{CH}_{2} \cdot \mathrm{CH}_{2} \cdot \mathrm{OH}$.	$34 \cdot 0$	$2 \cdot 30$	$2 \cdot 28$	$2 \cdot 29$	$2 \cdot 27$	$22 \cdot 16$

constants for acetic acid have been omitted in the calculation of the mean values. The parachor results are in good agreement with those of Hunter and Maass (J. Amer. Chem. Soc., 1929, 51, 153); their "experimental values of the parachors were the average obtained over 80° temperature range " over which the variation was less than 1%.

Table II.
Values for the $\mathrm{CO}_{2} \mathrm{H}$ group in aliphatic carboxylic acids.

It is of interest to compare the above mean values for $\mathrm{CO}_{2} \mathrm{H}$ with those obtained by the summation of CO (Part XI, loc. cit.; the mean values of CO deduced from all the ketones were used) and OH . The results are :

	P.			$R_{\text {F }}$.	$R_{G^{\prime}}$.	.
$\mathrm{CO}+\mathrm{OH}$	75•3	7•180	7.214	$7 \cdot 293$	$7 \cdot 360$	$66 \cdot 33$

The difference in the parachor is 1.6 units; the agreement between the refractivities must be regarded as fairly satisfactory in view of the slight variation of the individual CO constants (compare Part XI, loc. cit.). These results should be compared with those for COO in esters, the values for which differ considerably from those computed from CO (ketones) +O (ethers) (Part XIII, loc. cit.).

If the values for H deduced from CH_{2} in aliphatic hydrocarbons (Part IX, loc. cit.) are subtracted from those found for OH , the following constants for O (hydroxyl) are obtained :

The agreement of the refractivities with Eisenlohr's figures would seem to be fortuitous owing to his use of what must now be regarded as approximate values for CH_{2}. These values differ from the constants for O (ethers) and O (acetals) (Part XII, this vol., p. 616).

1816 Vogel: Physical Properties and Chemical Constitution.

Added October 14th, 1948.-The author is now of the opinion that two series of values for the constants of CO in ketones are required. The following mean values have been deduced from the date given in Part XI (this vol., p. 611; Table II).

	P.	$R_{\text {C }}$.	$R_{\text {d }}$.	$R_{\text {F }}$.	$R_{G^{\prime}}$.	$M n^{20}{ }^{\circ}$.
CO (in ketones).	$44 \cdot 4$	$4 \cdot 579$	4.601	$4 \cdot 654$	$4 \cdot 702$	$42 \cdot 41$
CO (in methyl ketones) ...	$46 \cdot 7$	$4 \cdot 730$	4.758	$4 \cdot 814$	$4 \cdot 874$	$42 \cdot 42$

If the former constants are employed, the results for $\mathrm{CO}+\mathrm{OH}$ are :

	P.	$R_{\text {C }}$.	$R_{\text {D }}$.	$R_{\text {F }}$.	$R_{\mathbf{G}^{\prime}}$.	$M n^{20}{ }^{\circ}$.
$\mathrm{CO}+\mathrm{OH}$	$74 \cdot 6$	$7 \cdot 115$	$7 \cdot 147$	$7 \cdot 224$	$7 \cdot 290$	66.35

Experimental.

Methyl alcohol. One litre of Burrough's synthetic absolute methyl alcohol was dried by Lund and Bjerrum's method (Ber., 1931, 64, 210) and carefully fractionated through a three-section Pyrex Young and Thomas column, a middle fraction being collected; b. p. $64 \cdot 5 / 766 \mathrm{~mm}$. (In the purification of this and the other alcohols precautions were taken to prevent the entrance of moisture; similar precautions were taken during the actual physical measurements.)

Ethyl alcohol. One litre of Burrough's absolute ethyl alcohol was similarly purified; b. p. $78^{\circ} / 760 \mathrm{~mm}$.
The following nine alcohols were dried (A.R. $\mathrm{K}_{2} \mathrm{CO}_{3}$) and fractionated.
n-Propyl alcohol. Redistilled Bisol n-propyl alcohol, b. p. $96 \cdot 5-97^{\circ} / 760 \mathrm{~mm} .$, gave b. p. $96 \cdot 5^{\circ} / 764 \mathrm{~mm}$.
isoPropyl alcohol. Redistilled Bisol isopropyl alcohol, b. p. $82 \cdot 1-82 \cdot 4^{\circ} / 760 \mathrm{~mm}$, gave b. p. $82 \cdot 3^{\circ} / 760 \mathrm{~mm}$.
n-Butyl alcohol. Redistilled Bisol n-butyl alcohol, b. p. $117 \cdot 0-117 \cdot 2^{\circ} / 750 \mathrm{~mm}$., gave b.p. $117^{\circ} / 754 \mathrm{~mm}$. iso Butyl alcohol. Redistilled Bisol product, b. p. $106-108^{\circ} / 752 \mathrm{~mm}$., gave b. p. $107 \cdot 5^{\circ} / 752 \mathrm{~mm}$.
$\mathrm{n}-A m y l$ alcohol. Boots synthetic n-amyl alcohol gave alcohol of b. p. $136^{\circ} / 746 \mathrm{~mm}$.
iso $A m y l$ alcohol. Sharples synthetic isobutylcarbinol afforded alcohol of b. p. $130^{\circ} / 746 \mathrm{~mm}$.
iso A myl alcohol. Bisol fermentation isoamyl alcohol finally had b. p. $130 \cdot 5^{\circ} / 764 \mathrm{~mm}$. The physical properties varied slightly from sample to sample, and hence were not employed in the calculation of the OH constants.
n -Hexyl alcohol. The redistilled Carbon and Carbide Corporation product, b. p. $156-157^{\circ} / 752 \mathrm{~mm}$., was purified to b. p. $155 \cdot 5^{\circ} / 736 \mathrm{~mm}$
$\mathrm{n}-$ Heptyl alcohol. A large sample, b. p. $175-177^{\circ} / 771 \mathrm{~mm} .$, prepared by reduction of redistilled n-heptaldehyde with iron and acetic acid (Org. Synth., 1926, 6, 52), ultimately had b. p. $175^{\circ} / 764 \mathrm{~mm}$.

The starting material for the next four alcohols was the Deutsche Hydrierwerke product.
n -Octyl alcohol. About 250 g . were carefully fractionated, and a middle fraction collected; b. p. $193 \cdot 5^{\circ} / 764 \mathrm{~mm}$.
n -Nonyl alcohol. The alcohol was dried, twice distilled, and a middle fraction collected; b. p. $212^{\circ} / 765 \mathrm{~mm}$.
n -Decyl and n-undecyl alcohol. The dried product was twice distilled, and a middle sample taken; b. p. $229^{\circ} / 760 \mathrm{~mm}$. and $243 \cdot 5^{\circ} / 769 \mathrm{~mm}$., respectively.

Allyl alcohol. The B.D.H. pure product was dried (A.R. $\mathrm{K}_{2} \mathrm{CO}_{3}$) and fractionated through a threesection Pyrex Young and Thomas column; b. p. $97^{\circ} / 760 \mathrm{~mm}$.

The initial alcohol in the following three cases was a Carbon and Carbide Corporation product.
"Methyl cellosolve" (2-methoxyethyl alcohol). The alcohol was dried (A.R. $\mathrm{K}_{2} \mathrm{CO}_{3}$) and distilled in an all-glass apparatus through a lagged Widmer column; b. p. $124^{\circ} / 757 \mathrm{~mm}$.
"Cellosolve" (2-ethoxyethyl alcohol). This was similarly purified; b. p. $135^{\circ} / 761 \mathrm{~mm}$.
"Butyl cellosolve" (2-butoxyethyl alcohol). This was dried (A.R. $\mathrm{K}_{2} \mathrm{CO}_{3}$,) fractionated through a well-lagged all-glass Dufton column, and then distilled in an all-glass apparatus; b. p. $168^{\circ} / 754 \mathrm{~mm}$.

Benzyl alcohol. The B.D.H. pure product was dried $\left(\mathrm{K}_{2} \mathrm{CO}_{3}\right)$ and fractionated; b. p. $203^{\circ} / 754 \mathrm{~mm}$.
2-Phenylethyl alcohol. A pure commercial product was dried and fractionally distilled; b. p. $216.5^{\circ} / 755 \mathrm{~mm}$.

Tetrahydrofurfuryl alcohol. The B.D.H. product was dried (CaSO_{4}) and carefully fractionated; b. p. $176^{\circ} / 762 \mathrm{~mm}$.

Acetic acid. The procedure employed is based upon that described by Bousfield and Lowry ($J ., 1911$, 99, 1432). 200 G . of B.D.H. A.R. glacial acetic acid were mixed with 4 g . of A.R. potassium permanganate and distilled from a $250-\mathrm{ml}$. round-bottomed flask through a three-section Pyrex Young and Thomas column, precautions being taken to prevent ingress of moisture : more than one-third distilled below 116.5°, the remainder at 117.0°, thus proving that purification by direct distillation with potassium permanganate is unsatisfactory. About 600 g . of A.R. glacial acetic acid were partly frozen, and ca. 300 g . of liquid poured off. The residual 300 g . was melted, mixed with 6 g . of A.R. potassium permanganate and fractionally distilled as before. The fraction, b. p. $116.5-117.5^{\circ} / 765 \mathrm{~mm}$. (ca. 225 g .), was collected, partly frozen and about half of the fluid portion rejected. Repetition of the distillation afforded pure acetic acid of b. p. $118 \cdot 0^{\circ} / 765 \mathrm{~mm}$.

Propionic acid. About 1 l. of Boake Roberts commercial acid were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and fractionated through a three-section Pyrex Young and Thomas column, that boiling at $139-141^{\circ} / 760 \mathrm{~mm}$. (mainly $140.8-141 \cdot 0^{\circ}$) being collected separately. 300 G . of this redistilled acid were mixed with 6 g . of A.R. potassium permanganate and fractionated as before; the first half was rejected, and the remainder distilled constantly at $140.7^{\circ} / 760 \mathrm{~mm}$., from which a middle fraction was separated for the physical measurements.
n -Butyric acid. $\quad 250 \mathrm{G}$. of the redistilled commercial product, b. p. $161 \cdot 5-163^{\circ} / 756 \mathrm{~mm}$., were mixed with 5 g . of A.R. potassium permanganate and fractionated as before. The first third was discarded, and the remainder distilled constantly at $162 \cdot 5^{\circ} / 767 \mathrm{~mm}$.
isoButyric acid. About 500 g . of Hopkin and Williams pure acid were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and fractionally distilled through a two-section Pyrex Young and Thomas column. After a small fraction of low b. p. had passed over, the acid boiled constantly at $154 \cdot 5^{\circ} / 775 \mathrm{~mm}$., from which a middle fraction was set aside for the physical measurements.
n -Valeric acid. This acid was synthesised in quantity according to the scheme : n-Butyl bromide $\longrightarrow n$-butyl cyanide $\longrightarrow n$-valeric acid. A large sample was distilled, and a middle fraction, b. p. $184^{\circ} / 768 \mathrm{~mm} .$, was collected.
isoValeric acid. About 500 g . of Kahlbaum's pure acid was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and fractionally distilled as before; b. p. $176 \cdot 5^{\circ} / 762 \mathrm{~mm}$.
n -Hexoic acid. Boots pure acid was dried and redistilled; b. p. $203^{\circ} / 756 \mathrm{~mm}$.
n -Heptoic acid. A large commercial sample was dried and twice fractionated; b. p. $222^{\circ} / 764 \mathrm{~mm}$.
n -Octoic acid. The redistilled Deutsche Hydrierwerke product, b. p. $235 \cdot 5-238^{\circ} / 762 \mathrm{~mm}$., was carefully fractionated; b. p. $236^{\circ} / 769 \mathrm{~mm}$.
453. Methyl alcohol. B. p. $64.5^{\circ} / 766 \mathrm{~mm} . ; M_{3} 32.04 ; n_{\mathrm{C}} 1.32694, n_{\mathrm{D}} 1.32855, n_{\mathrm{F}} 1.33225, n_{\mathrm{G}^{\prime}}$ $1.33477 ; R_{\mathrm{C}} 8 \cdot 18, R_{\mathrm{D}} 8 \cdot 22, R_{\mathrm{F}} 8 \cdot 30, R_{\mathrm{G}^{\prime}} 8 \cdot 36 ; M n_{\mathrm{D}}^{20^{\circ}} 42.57$. Densities determined: $d_{4^{\circ}}^{20^{\circ}} 0 \cdot 7924$, $d_{40^{\circ}}^{4.90^{\circ}}$ 0.7727 . Apparatus A.
(These headings apply to all subsequent tables in this paper.)

t.	H.	$d_{4}^{\text {t }}$.	γ.	P.	t.	H.	$d_{4}^{\text {do }}$.	γ.	P.
$15 \cdot 2^{\circ}$	15.33	0.7969	$22 \cdot 88$	87.9	$28 .{ }^{\circ}$	14.86	0.7847	21.83	$88 \cdot 3$
$19 \cdot 0$	$15 \cdot 21$	$0 \cdot 7934$	$22 \cdot 60$	88.0	$40 \cdot 2$	$14 \cdot 38$	0.7733	20.96	$88 \cdot 7$
									$88 \cdot 2$

454. Ethyl alcohol. B. p. $78^{\circ} / 760 \mathrm{~mm} . ; \operatorname{M6.07;} n_{\mathrm{O}} 1 \cdot 35959, n_{\mathrm{D}} 1 \cdot 36139, n_{\mathrm{F}} 1 \cdot 36565, n_{\mathrm{G}^{\prime}} 1 \cdot 36855$; $R_{\mathrm{G}} 12 \cdot 84, R_{\mathrm{D}} 12 \cdot 90, R_{\mathrm{F}} 13 \cdot 04, R_{\mathrm{G}}{ }^{\prime} 13 \cdot 13 ; M n_{\mathrm{D}}^{20^{\circ}} 62 \cdot 72$. Densities determined : $d_{4}^{20{ }^{\circ}} 0 \cdot 7910, d_{40^{4}}^{4 \cdot 3^{\circ}} 0 \cdot 7735$, $d_{4}^{57 \cdot 2^{\circ}} 0 \cdot 7597$. Apparatus A.

16.8°	15.18	0.7937	22.56	$126 \cdot 5$	40.3°	14.32	0.7743	20.76	127.0
22.3	15.02	0.7891	22.19	126.7	59.3	13.43	0.7580	19.06	127.1
25.8	14.93	0.7862	21.98	126.9				Mean 126.8	

455. n-Propyl alcohol. B. p. $96 \cdot 5^{\circ} / 764 \mathrm{~mm}$.; $M 60 \cdot 13$; $n_{\mathrm{C}} 1 \cdot 38364, n_{\mathrm{D}} 1 \cdot 38556, n_{\mathrm{F}} 1 \cdot 39015, n_{\mathrm{G}^{\prime}}$, $1.39341 ; R_{\mathrm{G}} 17.46, R_{\mathrm{D}} 17.54, R_{\mathrm{F}} 17 \cdot 73, R_{\mathrm{G}}{ }^{17.86}$; $M n_{\mathrm{D}}^{20^{\circ}} 83.32$. Densities determined : $d_{4}^{20^{\circ}} 0.8043$, $d_{4^{\circ}}^{41.6} 0 \cdot 7880, d_{4^{\circ}}^{59.4^{\circ}} 0 \cdot 7745$. Apparatus A.

17.8°	15.84	0.8060	23.91	$165 \cdot 0$	$41 \cdot 6^{\circ}$	14.90	0.7880	$21 \cdot 99$	$165 \cdot 3$
21.0	15.73	0.8035	23.61	165.0	59.9	$14 \cdot 23$	0.7741	20.63	$165 \cdot 7$
								Mean $165 \cdot 2$	

456. isoPropyl alcohol. B. p. $82.3^{\circ} / 760 \mathrm{~mm} . ; ~ M 60.09 ; n_{\mathrm{O}} 1.37523, n_{\mathrm{D}} 1.37711, n_{\mathrm{F}} 1.38168, n_{\mathrm{G}^{-}}$ $1.38484 ; R_{\mathrm{U}} 17.50, R_{\mathrm{D}} 17.58, R_{\mathrm{F}} 17.77, R_{\mathrm{G}} 17.90 ; M n_{\mathrm{D}}^{20^{\circ}} 82.75$. Densities determined : $d_{4}^{200^{\circ}} 0.7864$, $d_{4 \cdot}^{41 \cdot 2^{\circ}} 0.7697, d_{4^{\circ}}^{59.2^{\circ}} 0.7532$. Apparatus A.

17.1°	14.68	0.7888	21.68	$164 \cdot 4$	$41 \cdot 9^{\circ}$	13.60	0.7691	19.59	$164 \cdot 4$
21.0	14.50	0.7858	21.34	164.3	59.5	12.75	0.7530	17.98	$164 \cdot 5$
								Mean $164 \cdot 4$	

 $1.40744 ; R_{\mathrm{O}} 22.04, R_{\mathrm{D}} 22 \cdot 14 . R_{\mathrm{F}} 22 \cdot 37, R_{\mathrm{G}^{\prime}} 22.53$; $M n_{\mathrm{D}}^{20^{\circ}} 103 \cdot 72$. Densities determined : $d_{40^{\circ}}^{20} 0.8104$, $d_{4^{\circ}}^{40.4^{\circ}} 0.7956, d_{4^{6}}^{61.0^{\circ}} 0.7793, d_{4^{\circ}}^{85.0^{\circ}} 0.7594$. Apparatus A.

16.0°	16.91	0.8134	25.76	$205 \cdot 3$	$61 \cdot 8^{\circ}$	14.85	0.7787	$21 \cdot 65$	$205 \cdot 3$
$24 \cdot 0$	16.53	0.8074	24.99	$205 \cdot 3$	86.5	13.70	0.7582	$19 \cdot 45$	$205 \cdot 3$
41.9	$15 \cdot 80$	0.7945	23.51	$205 \cdot 4$				Mean $205 \cdot 3$	

458. iso Butyl alcohol. B. p. $107.5^{\circ} / 752 \mathrm{~mm} . ; \operatorname{M4} \cdot 12$; $n_{\mathrm{C}} 1.39343, n_{\mathrm{D}} 1 \cdot 39549, n_{\mathrm{F}} 1.40016, n_{\text {G }}$ $1.40361 ; R_{\mathrm{C}} 22.07, R_{\mathrm{D}} 22.17, R_{\mathrm{F}} 22.41, R_{\mathrm{G}}, 22.57 ; M n_{\mathrm{D}}^{20^{\circ}} 103.43$. Densities determined: $d_{4}^{20{ }^{\circ}} 0.8021$, $d_{4}^{42 \cdot 7^{\circ}} 0.7852, d_{4}^{61 \cdot 5^{\circ}} 0.7699, d_{4}^{85 \cdot 0^{\circ}}{ }_{0} \cdot 7501$. Apparatus D.

15.9°	11.69	0.8053	23.25	$202 \cdot 1$	61.9°	10.34	0.7696	19.65	202.8
$23 \cdot 2$	11.46	0.7996	22.63	202.2	86.5	9.52	0.7489	17.61	202.7
41.3	10.98	0.7863	21.32	202.6				Mean 202.6	

459. $\mathrm{n}-$ Amyl alcohol. B. p. $136^{\circ} / 746 \mathrm{~mm}$.; $M 88.15 ; n_{\mathrm{C}} 1.40793, n_{\mathrm{D}} 1.40999, n_{\mathrm{F}} 1.41498, n_{\mathrm{G}}$ $1.41854 ; R_{\mathrm{O}} 26.72, R_{\mathrm{D}} 26.84, R_{\mathrm{F}} 27 \cdot 13, R_{\mathrm{G}}{ }^{\prime} 27.33$; $M n_{\mathrm{D}}^{20^{\circ}} 124 \cdot 29$. Densities determined : $d_{4 \circ^{20}} 0.8136$, $d_{4}^{41 \cdot 4^{\circ}} 0 \cdot 7981, d_{40^{60}}^{60 \cdot 6^{\circ}} 0.7835, d_{40^{\circ}}^{85 \cdot 0^{\circ}} 0 \cdot 7640$. Apparatus D.

$14 \cdot 3^{\circ}$	13.04	$0 \cdot 8178$	$26 \cdot 31$	$244 \cdot 2$	$62 \cdot 2^{\circ}$	$11 \cdot 46$	0.7823	$22 \cdot 14$	$244 \cdot 4$
$17 \cdot 2$	12.92	0.8157	$26 \cdot 03$	$244 \cdot 1$	$87 \cdot 0$	10.56	0.7625	$19 \cdot 93$	$244 \cdot 1$
$40 \cdot 9$	$12 \cdot 14$	0.7958	23.94	$244 \cdot 2$				Mean $244 \cdot 2$	

1818 Vogel: Physical Properties and Chemical Constitution.

460A. iso $A m y l$ alcohol (fermentation; Bisol). B. p. $130.5^{\circ} / 764 \mathrm{~mm} . ; M 88.15 ; n_{\mathrm{C}} 1.40527, n_{\mathrm{D}}$ $1.40731, n_{\mathrm{F}} 1 \cdot 41227, n_{\mathrm{G}^{\prime}} 1 \cdot 41582 ; R_{\mathrm{C}} 26 \cdot 64, R_{\mathrm{D}} 26 \cdot 75, R_{\mathrm{F}} 27 \cdot 03, R_{\mathrm{G}^{\prime}} 27 \cdot 24 ; M n_{\mathrm{D}}^{20^{\circ}} 124 \cdot 05$. Densities determined : $d_{4 \cdot}^{2 \cdot}{ }^{\circ} 0 \cdot 8118, d_{4}^{42 \cdot 3^{\circ}} 0 \cdot 7952, d_{4^{\circ}}^{61 \cdot 4^{\circ}} 0 \cdot 7813, d_{4^{\circ}}^{87 \cdot 0^{\circ}} 0 \cdot 7598$. Apparatus D.

t.	H.	$d_{4}^{\circ} \cdot$	γ.	P.	t.	H.	$d_{4}^{\circ}{ }^{\circ}$.	γ.	P.
19.3°	12.07	0.8123	$24 \cdot 21$	$240 \cdot 8$	$60 \cdot 9^{\circ}$	10.78	0.7817	20.81	240.9
$24 \cdot 3$	11.87	0.8085	23.70	240.6	$86 \cdot 5$	9.93	0.7602	18.64	240.9
$42 \cdot 3$	11.36	0.7952	22.31	240.9					Mean 240.8

460 B . iso Amyl alcohol (synthetic; Sharples). B. p. $130^{\circ} / 746 \mathrm{~mm} . ; n_{\mathrm{O}} 1 \cdot 40657, n_{\mathrm{D}} 1 \cdot 40865, n_{\mathrm{F}}$ $1.41361, n_{a^{\prime}} 1.41708 ; R_{\mathrm{G}} 26 \cdot 64, R_{\mathrm{D}} 26.76, R_{\mathrm{F}} 27 \cdot 04, R_{\mathrm{G}}, 27 \cdot 24 ; M n_{\mathrm{D}}^{20^{\circ}} 124 \cdot 18$. Densities determined: $d_{4}^{20^{\circ}} 0 \cdot 8139, d_{40^{40}}{ }^{\circ} 0 \cdot 7994, d_{4}^{60 \cdot 2}{ }^{\circ} 0 \cdot 7844, d_{4^{\circ}}^{86 \cdot 0^{\circ}} 0 \cdot 7639$.
461. n-Hexyl alcohol. B. p. $155 \cdot 5^{\circ} / 736 \mathrm{~mm} . ; ~ M 102.17$; $n_{\mathrm{C}} 1.41606, n_{\mathrm{D}} 1.41816, n_{\mathrm{F}} 1.42325, n_{\mathrm{G}^{\prime}}$ $1.42694 ; R_{\mathrm{G}} 31 \cdot 25, R_{\mathrm{D}} 31 \cdot 39, R_{\mathrm{F}} 31.73, R_{\mathrm{G}}, 31.96 ; M n_{\mathrm{D}}^{20^{\circ}} 144.90$. Densities determined: $d_{40^{2}}{ }^{\circ} 0.8205$, $d_{4^{\circ}}^{41 \cdot 0^{\circ}} 0.8058, d_{4^{\circ}}^{61 \cdot 8^{\circ}} 0.7909, d_{4^{\circ}}^{86 \cdot 4^{\circ}} 0.7713$. The surface-tension results by the method of capillary rise were erratic.
462. n -Heptyl alcohol. B. p. $175^{\circ} / 764 \mathrm{~mm}$.; $M 116 \cdot 20$; $n_{\mathrm{O}} 1 \cdot 42137, n_{\mathrm{D}} 1 \cdot 42351, n_{\mathrm{F}} 1 \cdot 42870, n_{\mathrm{G}^{\prime}}$, $1.43243 ; R_{\mathrm{C}} 35 \cdot 88, R_{\mathrm{D}} 36.04, R_{\mathrm{F}} 36 \cdot 42, R_{\mathrm{G}^{\prime}} 36.70 ; M n_{\mathrm{D}}^{20^{\circ}} 165 \cdot 41$; $d_{4^{\circ}}^{20^{\circ}} 0.8219$.
463. n-Octyl alcohol. B. p. $212^{\circ} / 765 \mathrm{~mm}$.; $M 144.25$; $n_{\mathrm{G}} 1.43105, n_{\mathrm{D}} 1.43325, n_{\mathrm{F}} 1.43856, n_{\mathrm{G}}$. $1.44241 ; R_{\mathrm{C}} 45 \cdot 14, R_{\mathrm{D}} 45 \cdot 34, R_{\mathrm{F}} 45 \cdot 83, R_{\mathrm{G}} \cdot 46 \cdot 17 ; M n_{\mathrm{D}}^{20^{\circ}} 206 \cdot 75 ; d_{4}^{20^{\circ}}{ }^{\circ} \cdot 8273$.
464. n - Nonyl alcohol. B. p. $212^{\circ} / 765 \mathrm{~mm}$.; $M 144.25$; $n_{\mathrm{O}} 1.43105, n_{\mathrm{D}} 1.43325, n_{\mathrm{F}} 1.43856, n_{\mathrm{G}}$. $1.44241 ; R_{\mathrm{D}} 45 \cdot 14, R_{\mathrm{D}} 45 \cdot 34, R_{\mathrm{F}} 45 \cdot 83, R_{\mathrm{G}} \cdot 46 \cdot 17 ; n_{\mathrm{D}}^{20^{\circ}} 206 \cdot 75 ; d_{4}^{20{ }^{\circ}} 0 \cdot 8273$.
465. n-Decyl alcohol. B. p. $229^{\circ} / 760 \mathrm{~mm} . ; M 158.26$; $n_{\mathrm{O}} 1 \cdot 43440, n_{\mathrm{D}} 1 \cdot 43660, n_{\mathrm{F}} 1 \cdot 44197, n_{G^{\prime}}$. $1.44591 ; R_{\mathrm{O}} 49.78, R_{\mathrm{D}} 50.00, R_{\mathrm{F}} 50.53, R_{\mathrm{G}^{\prime}} 50.92 ; M n_{\mathrm{D}}^{20^{\circ}} 227 \cdot 36 ; d_{4^{\circ}}^{20^{\circ}} 0.8287$.
466. n-Undecyl alcohol. B. p. $243.5^{\circ} / 769 \mathrm{~mm}$.; $M 172.30$; $n_{\mathrm{O}} 1.43697, n_{\mathrm{D}} 1 \cdot 43918, n_{\mathrm{F}} 1.44460$, $n_{\mathbf{G}^{\prime}} 1 \cdot 44859 ; R_{\mathrm{C}} 54 \cdot 40, R_{\mathrm{D}} 54 \cdot 64, R_{\mathrm{F}} 55 \cdot 22, R_{\mathbf{G}^{\prime}} 55 \cdot 65 ; ~ M n_{\mathrm{D}}^{20} 247 \cdot 97 ; d_{40^{20}}{ }^{20} 0.8298$.
467. Allyl alcohol. B. p. $97^{\circ} / 760 \mathrm{~mm} . ; M 58.08 ; n_{\mathrm{C}} 1 \cdot 40994, n_{\mathrm{D}} 1.41266, n_{\mathrm{F}} 1.41941, n_{\text {f }} 1.42456$; $R_{\mathrm{G}} 16.88, R_{\mathrm{D}} 16.98, R_{\mathrm{F}} 17 \cdot 22, R_{\mathrm{G}^{\circ}} 17 \cdot 41 ; M n_{\mathrm{D}}^{20^{\circ}} 82 \cdot 05$. Densities determined : $d_{40^{\circ}}^{20 \circ} 0.8524, d_{4^{\circ}}^{41 \cdot 5^{\circ}} 0.8345$, $d_{4}^{61 \cdot 0^{\circ}} 0 \cdot 8176$. Apparatus A.

$17 \cdot 1^{\circ}$	16.25	0.8549	26.01	153.4	$41 \cdot 2^{\circ}$	$15 \cdot 23$	0.8348	$23 \cdot 81$	$153 \cdot 7$
28.5	15.75	0.8452	24.93	153.5	60.2	14.43	0.8183	$22 \cdot 11$	$154 \cdot 4$
								Mean $153 \cdot 7$	

468. 2-Methoxyethyl alcohol (" methyl cellosolve"). B. p. $124^{\circ} / 757 \mathrm{~mm}$.; $M 76 \cdot 07$; $n_{\mathrm{O}} 1 \cdot 40039$, $n_{\mathrm{D}} 1 \cdot 40238, n_{\mathrm{F}} 1 \cdot 40713, n_{\mathrm{G}^{\prime}} 1 \cdot 41049 ; R_{\mathrm{D}} 19 \cdot 10, R_{\mathrm{D}} 19 \cdot 18, R_{\mathrm{F}} 19 \cdot 38, R_{\mathrm{G}^{\prime}} 19 \cdot 52 ; M n_{\mathrm{D}}^{20^{\circ}} 106 \cdot 68$. Densities determined : $d_{4^{\circ}}^{20^{\circ}} 0.9663, d_{4^{\circ}}^{40.9^{\circ}} 0.9465, d_{40^{61 \cdot}}{ }^{\circ} 0.9277, d_{40^{\circ}}^{86 \cdot 1^{\circ}} 0.9043$. Apparatus A.

$14 \cdot 9^{\circ}$	17.50	0.9710	$31 \cdot 82$	$186 \cdot 1$	$61 \cdot 5^{\circ}$	15.68	0.9281	$27 \cdot 25$	$187 \cdot 3$
41.0	16.52	0.9464	29.28	187.0	$85 \cdot 6$	14.68	0.9048	24.87	187.8
								Mean $187 \cdot 1$	

469. 2-Ethoxyethyl alcohol ("cellosolve"). B. p. $135^{\circ} / 761 \mathrm{~mm} . ; M 90 \cdot 12 ; n_{\mathrm{C}} 1 \cdot 40547, n_{\mathrm{D}} 1 \cdot 40751$, $n_{\mathrm{F}} 1 \cdot 41224, n_{\mathrm{G}^{\prime}} 1 \cdot 41591 ; R_{\mathrm{G}} 23 \cdot 78, R_{\mathrm{D}} 23 \cdot 89, R_{\mathrm{F}} 24 \cdot 13, R_{\mathrm{G}^{\prime}} 24 \cdot 32 ; M n_{\mathrm{D}}^{20^{\circ}} 126 \cdot 84$. Densities determined : $d_{4^{\circ}}^{20} 0.9297, d_{4^{\circ}}^{4 .} 0^{\circ} 0.9114, d_{4^{\circ}}^{6 \cdot 9} 0.8941, d_{4^{\circ}}^{86 \cdot 4} 0.8713$. Apparatus D.

$24 \cdot 7^{\circ}$	12.45	0.9255	28.46	224.9	$60 \cdot 3^{\circ}$	11.33	0.8946	$25 \cdot 03$	$225 \cdot 3$
$29 \cdot 1$	12.33	0.9218	28.07	$225 \cdot 0$	$87 \cdot 2$	10.64	0.8706	22.88	$226 \cdot 4$
$40 \cdot 3$	11.92	0.9120	26.85	224.9				Mean $225 \cdot 3$	

470. n -Butoxyethyl alcohol (" butyl cellosolve"). B. p. $168^{\circ} / 754 \mathrm{~mm} . ; M 118 \cdot 17$; $n_{\mathrm{C}} 1 \cdot 41745, n_{\mathrm{D}}$ $1.41956, n_{\mathrm{F}} 1.42458, n_{\mathrm{G}^{\prime}} 1.42833 ; R_{\mathrm{G}} 32.99, R_{\mathrm{D}} 33 \cdot 13, R_{\mathrm{F}} 33.48, R_{\mathrm{G}^{\prime}} 33 \cdot 73 ; M n_{\mathrm{D}}^{20^{\circ}} 167.75$. Densities determined : $d_{40^{20}} 0.9018, d_{40^{4.0}}{ }^{\circ} 0.8850, d_{40^{6 .}}{ }^{6} 0.8681, d_{4}^{86.4^{\circ}} 0.8457$. Apparatus A.

17.9°	15.73	0.9036	26.62	297.0	60.1°	14.25	0.8684	23.17	297.9
40.9	15.13	0.8843	25.05	299.0	86.5	13.34	0.8456	21.12	299.4
									Mean 298.3

The surface-tension measurements were not altogether satisfactory and require confirmation by the method of maximum bubble pressure
471. Benzyl alcohol. B. p. $203^{\circ} / 754 \mathrm{~mm}$.; $M 108.13$; $n_{\mathrm{G}} 1.53552, n_{\mathrm{D}} 1.54033, n_{\mathrm{F}} 1.55259, n_{\mathrm{G}^{\prime}}$ $1.56227 ; R_{\mathrm{C}} 32.22, R_{\mathrm{D}} 32.47, R_{\mathrm{F}} 33.08, R_{\mathrm{G}^{\prime}} 33.56 ; M n_{\mathrm{D}}^{20^{\circ}} 166.55$. Densities determined : $d_{4^{\circ}}^{20^{\circ}} 1.0454$, $d_{4^{\circ}}^{41 \cdot 1^{\circ}} 1 \cdot 0301, d_{4^{\circ}}^{61 \cdot 0^{\circ}} 1 \cdot 0152, d_{4^{\circ}}^{86 \cdot 6^{\circ}} 0.9952$. The surface tension results were unsatisfactory.
472. 2-Phenylethyl alcohol. B. p. $216 \cdot 5^{\circ} / 755 \mathrm{~mm}$.; $M 122 \cdot 16 ; n_{\mathrm{O}} 1 \cdot 52760, n_{\mathrm{D}} 1 \cdot 53210, n_{\mathrm{F}} 1 \cdot 54363$, $n_{\mathrm{G}^{\prime}} 1 \cdot 55259$; $R_{\mathrm{C}} 36 \cdot 86, R_{\mathrm{D}} 37 \cdot 12, R_{\mathrm{F}} 37 \cdot 79, R_{\mathrm{G}^{\prime}} 38 \cdot 31 ; M n_{\mathrm{D}}^{20^{\circ}} 187 \cdot 15$. Densities determined: $d_{4^{2} 0^{\circ}}$ $1.0198, d_{4^{4} \cdot 0^{\circ}}^{4 \cdot} 1.0053, d_{4^{6 .}}^{60} 6^{\circ} 0.9904, d_{4^{\circ}}^{86 \cdot 4^{\circ}} 0.9701$. Apparatus D.

$24 \cdot 5^{\circ}$	16.09	1.0165	40.39	$303 \cdot 0$	59.5°	$14 \cdot 98$	0.9911	$36 \cdot 67$	$303 \cdot 3$
40.9	15.55	1.0047	38.58	303.0	86.7	14.16	0.9699	33.92	$303 \cdot 9$
									Mean $303 \cdot 3$

473. Tetrahydrofurfuryl alcohol. B. p. $176^{\circ} / 762 \mathrm{~mm} . ; ~ M 102.13, n_{\mathrm{C}} 1 \cdot 44987, n_{\mathrm{D}} 1 \cdot 45197, n_{\mathrm{F}} 1.45731$, $n_{G}{ }^{\prime} 1 \cdot 46173 ; R_{\mathrm{G}} 26.05, R_{\mathrm{D}} 26 \cdot 15, R_{\mathrm{F}} 26 \cdot 42, R_{\mathrm{G}} \cdot 26 \cdot 64 ; M n_{\mathrm{D}}^{20} 148 \cdot 29$. Densities determined: $\epsilon_{4}^{20}{ }^{\circ}$ $1 \cdot 0535,4^{41 \cdot 3^{\circ}} 1 \cdot 0365, d_{4}^{61 \cdot 5^{\circ}} 1 \cdot 0194, d_{4}^{86} \cdot 5^{\circ} 0.9984$. Apparatus A.

t.	H.	$d_{4}^{t^{\circ}}$.	γ.	P.	t.	H.	$d_{4}^{\text {i }}$.	γ.	P.
$21.6{ }^{\circ}$	14.55	1.0522	$37 \cdot 81$	$240 \cdot 7$	$60.5{ }^{\circ}$	$13 \cdot 43$	1.0202	$33 \cdot 84$	241.4
$22 \cdot 8$	14.50	1.0512	$37 \cdot 64$	$240 \cdot 7$	$87 \cdot 0$	$12 \cdot 67$	0.9971	$31 \cdot 20$	$242 \cdot 1$
$40 \cdot 7$	$14 \cdot 00$	1.0370	$35 \cdot 85$	$241 \cdot 0$					$241 \cdot 5$

474. Acetic acid. B. p. $118.0^{\circ} / 765 \mathrm{~mm}$.; $M 60.05$; $n_{\mathrm{C}} 1.36952$, $n_{\mathrm{D}} 1.37151, n_{\mathrm{F}} 1.37615, n_{\mathrm{G} \cdot} 1.37941$; $R_{\mathrm{C}} 12.93, R_{\mathrm{D}} 12.99, R_{\mathrm{F}} 13 \cdot 14, R_{\mathrm{G}}, 13 \cdot 24 ; M n_{\mathrm{D}}^{20^{\circ}} 82 \cdot 36$. Densities determined : $d_{4^{\circ}}^{20^{\circ}} 1 \cdot 0492, d_{4^{4}}^{4} \cdot 4^{\circ} 1 \cdot 0267$, $d_{4}^{61 \cdot 4} 1 \cdot 0044, d_{4}^{87 \cdot 1}{ }^{\circ} 0.9769$. Apparatus D.

$20 \cdot{ }^{\circ}$	$10 \cdot 64$	1.0491	$27 \cdot 57$	$131 \cdot 2$	$42 \cdot{ }^{\circ}$	$10 \cdot 01$	1.0257	$25 \cdot 36$	131.4
$23 \cdot 1$	$10 \cdot 55$	1.0459	$27 \cdot 25$	$131 \cdot 2$	$61 \cdot 8$	$9 \cdot 46$	1.0040	$23 \cdot 46$	$131 \cdot 9$
26.9	$10 \cdot 48$	$1 \cdot 0418$	26.96	$131 \cdot 3$	$87 \cdot 5$	$8 \cdot 65$	0.9765	20.86	$131 \cdot 4$
								131.4	

475. Propionic acid. B. p. $140 \cdot 7^{\circ} / 760 \mathrm{~mm} . ; \quad M 74 \cdot 08 ; n_{\mathrm{C}} 1 \cdot 38425, n_{\mathrm{D}} 1 \cdot 38623, n_{\mathrm{F}} 1 \cdot 39098, n_{\mathrm{G}}$. $1.39430 ; R_{\mathrm{D}} 17 \cdot 43, R_{\mathrm{D}} 17 \cdot 51, R_{\mathrm{F}} 17 \cdot 70, R_{\mathrm{G}^{\prime}} 17 \cdot 84 ; M n_{\mathrm{D}}^{20^{\circ}} 102 \cdot 69$. Densities determined : $d_{4 \cdot}^{200^{\circ}} 0.9942$, $d_{4^{\circ}}^{42 \cdot 3^{\circ}} 0.9715, d_{4 .}^{66.1^{\circ}} 0.9510, d_{4}^{86 \cdot 5^{\circ}}{ }^{0} 9.9263$. Apparatus A.

$14 \cdot 6^{\circ}$	$14 \cdot 52$	0.9997	27.24	$169 \cdot 2$	$61 \cdot 5^{\circ}$	$12 \cdot 65$	0.9516	$22 \cdot 54$	$169 \cdot 6$
$26 \cdot 1$	$14 \cdot 13$	0.9880	$26 \cdot 14$	$169 \cdot 5$	$86 \cdot 3$	11.62	0.9265	$20 \cdot 16$	$169 \cdot 4$
$42 \cdot 1$	$13 \cdot 42$	0.9717	$24 \cdot 42$	$169 \cdot 5$				Mean $169 \cdot 4$	

476. n -Butyric acid. B. p. $162.5^{\circ} / 767 \mathrm{~mm} . ; \quad M 88.10 ; n_{\mathrm{C}} 1.39552, n_{\mathrm{D}} 1.39768, n_{\mathrm{F}} 1.40256, n_{\mathrm{G}}$. $1 \cdot 40612 ; R_{\mathrm{G}} 22 \cdot 11, R_{\mathrm{D}} 22 \cdot 22, R_{\mathrm{F}} 22 \cdot 46, R_{\mathrm{G}}{ }^{\circ} 22 \cdot 63 ; M n_{\mathrm{D}}^{20^{\circ}} 123 \cdot 14$. Densities determined : $d_{40^{\circ}}^{20^{\circ}} 0.9563$, $d_{4^{\circ}}^{41 \cdot 2^{\circ}} 0.9373, d_{4}^{61 \cdot 0^{\circ}} 0.9187, d_{4^{8 .}}^{86} 0.8938$. Apparatus A.

$22 \cdot 5^{\circ}$	$14 \cdot 70$	0.9540	$26 \cdot 26$	$209 \cdot 0$	$42 \cdot 0$	$13 \cdot 96$	0.9366	$24 \cdot 48$	$209 \cdot 2$
$24 \cdot 4$	$14 \cdot 64$	0.9522	$26 \cdot 10$	$209 \cdot 1$	$61 \cdot 4$	$13 \cdot 20$	$0 \cdot 9183$	$22 \cdot 70$	$209 \cdot 4$
$29 \cdot 8$	$14 \cdot 46$	0.9473	$25 \cdot 65$	$209 \cdot 3$	$87 \cdot 3$	$12 \cdot 15$	$0 \cdot 8933$	$20 \cdot 32$	$209 \cdot 4$

Mean 209-3
47\%. isoButyvic acid. B. p. $154 \cdot 5^{\circ} / 775 \mathrm{~mm}$; $M 88 \cdot 10$; $n_{\mathrm{C}} 1 \cdot 39096, n_{\mathrm{D}} 1 \cdot 39300, n_{\mathrm{F}} 1 \cdot 39782, n_{\mathrm{G}}$, $1 \cdot 40129 ; R_{\mathrm{O}} 22 \cdot 07, R_{\mathrm{D}} 22 \cdot 17, R_{\mathrm{F}} 22 \cdot 41, R_{\mathrm{G}} \cdot 22 \cdot 59 ; M n_{\mathrm{D}}^{20^{\circ}} 122 \cdot 69$. Densities determined : $d_{4}^{20^{\circ}} 0.9483$, $d_{4}^{41.3^{\circ}} 0.9276, d_{4 \circ}^{60.8^{\circ}} 0.9090, d_{4 \cdot}^{85 \cdot 2^{\circ}} 0.8843$. Apparatus D.

$15 \cdot 1^{\circ}$	$10 \cdot 88$	0.9531	$25 \cdot 61$	207.9	$41 \cdot 8^{\circ}$	10.02	0.9271	$22 \cdot 96$	207.8
$20 \cdot 1$	10.71	0.9482	$25 \cdot 08$	207.9	$59 \cdot 5$	$9 \cdot 46$	0.9103	21.27	$207 \cdot 9$
$23 \cdot 5$	10.63	0.9459	$24 \cdot 83$	207.8	$87 \cdot 5$	8.61	0.8821	$18 \cdot 76$	$207 \cdot 6$
								Mean 207.8	

478. n -Valeric acid. B. p. $184^{\circ} / 768 \mathrm{~mm} . ; \quad M 102 \cdot 13$; $n_{\mathrm{O}} 1 \cdot 40589, n_{\mathrm{D}} 1 \cdot 40800, n_{\mathrm{F}} 1 \cdot 41305, n_{\mathbf{G}^{\prime}}$ $1 \cdot 41672 ; R_{\mathrm{C}} 26 \cdot 71, R_{\mathrm{D}} 26 \cdot 83, R_{\mathrm{F}} 27 \cdot 13, R_{\mathrm{G}} \cdot 27 \cdot 33 ; M n_{\mathrm{D}}^{20^{\circ}} 143 \cdot 80$. Densities determined : $d_{4^{\circ}}{ }^{\circ} 0.9390$, $d_{4^{\circ}}^{41 \cdot 0^{\circ}} 0.9211, d_{4^{\circ}}^{60 \cdot 8^{\circ}} 0.9039, d_{4^{\circ}}^{85} \cdot 5^{\circ} 0.8819$. Apparatus A.

$19 \cdot 2^{\circ}$	$15 \cdot 51$	0.9397	27.29	$248 \cdot 4$	$60 \cdot 4^{\circ}$	$13 \cdot 92$	0.9042	$23 \cdot 57$	$248 \cdot 7$
$27 \cdot 2$	$15 \cdot 16$	0.9328	$26 \cdot 48$	$248 \cdot 4$	$86 \cdot 1$	12.90	0.8815	$21 \cdot 29$	$248 \cdot 9$
$41 \cdot 7$	14.54	0.9205	$25 \cdot 06$	$248 \cdot 2$				Mean $248 \cdot 5$	

479. iso Valeric acid. B. p. $176 \cdot 5^{\circ} / 762 \mathrm{~mm} . ; ~ M 102 \cdot 13 ; n_{\mathrm{O}} 1 \cdot 40123, n_{\mathrm{D}} 1.40331, n_{\mathrm{F}} 1 \cdot 40832, n_{\mathrm{G}^{\prime}}$ $1.41188 ; R_{\mathrm{G}} 26 \cdot 72, R_{\mathrm{D}} 26 \cdot 85, R_{\mathrm{F}} 27 \cdot 15, R_{\mathrm{G}^{\prime}} 27 \cdot 36 ; M n_{\mathrm{D}}^{20^{\circ}} 143 \cdot 32$. Densities determined: $d_{4}^{20{ }^{\circ}} 0.9286$, $d_{4}^{40 \cdot 8^{\circ}} 0.9102, d_{4}^{80 \cdot 8^{\circ}} 0.8926, d_{4^{\circ}}^{8 \cdot \cdot 9^{\circ}} 0.8687$. Apparatus D.

$19 \cdot 9^{\circ}$	$11 \cdot 14$	0.9289	$25 \cdot 55$	$247 \cdot 2$	$63 \cdot 1^{\circ}$	$9 \cdot 87$	0.8920	$21 \cdot 74$	$247 \cdot 2$
$26 \cdot 4$	$10 \cdot 96$	0.9229	$24 \cdot 98$	$247 \cdot 4$	$85 \cdot 7$	$9 \cdot 17$	0.8698	$19 \cdot 70$	$247 \cdot 4$
$43 \cdot 4$	$10 \cdot 39$	0.9079	$23 \cdot 30$	$247 \cdot 1$				Mean $247 \cdot 3$	

480. n-Hexoic acid. B. p. $203^{\circ} / 756 \mathrm{~mm} . ; ~ M 116 \cdot 16 ; n_{\mathrm{G}} 1 \cdot 41412, n_{\mathrm{D}} 1 \cdot 41626, n_{\mathrm{F}} 1 \cdot 42143, n_{\mathrm{G}^{\prime}} 1 \cdot 42516$; $R_{\mathrm{G}} 31 \cdot 34, R_{\mathrm{D}} 31 \cdot 48, R_{\mathrm{F}} 31 \cdot 82, R_{\mathrm{G}^{\prime}} 32 \cdot 07 ; M n_{\mathrm{D}}^{20^{\circ}} 164 \cdot 52 ; d_{4^{\circ}}^{20^{\circ}} 0 \cdot 9265$.
481. n-Heptoic acid. B. p. $222^{\circ} / 764 \mathrm{~mm}$.; $M 130 \cdot 18 ; n_{\mathrm{O}} 1 \cdot 42138, n_{\mathrm{D}} 1 \cdot 42361, n_{\mathrm{F}} 1 \cdot 42896, n_{\mathrm{G}}$ $1.43281 ; R_{\mathrm{O}} 35.92, R_{\mathrm{D}} 36 \cdot 08, R_{\mathrm{F}} 36.48, R_{\mathrm{G}^{\prime}} 36 \cdot 76 ; M n_{\mathrm{D}}^{20^{\circ}} 185 \cdot 32 ; d_{40^{\circ}}^{20^{\circ}} 0.9200$.
482. n-Octoic acid. B. p. $236^{\circ} / 769 \mathrm{~mm}$.; $M 144 \cdot 21$; $n_{\mathrm{D}} 1 \cdot 42557, n_{\mathrm{D}} 1.42777, n_{\mathrm{F}} 1 \cdot 43311, n_{\mathrm{G}^{\prime}} 1 \cdot 43693$; $R_{\mathrm{C}} 40 \cdot 60, R_{\mathrm{D}} 40 \cdot 79, R_{\mathrm{F}} 41 \cdot 23, R_{\mathbf{G}^{\prime}} 41 \cdot 54 ; M n_{\mathrm{D}}^{20^{\circ}} 205 \cdot 90 ; d_{4^{\circ}}^{20^{\circ}} 0.9093$.

Woolwich Polytechnic, London, S.E.18.
[Received, December 4th, 1947.]

